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Abstract

We present a general framework for models admitting a decomposition of the typed = [δ, b],
with b the BRST operator andδ a certain (even) derivation. We focus our attention on models whose
fields can be described as components of two laddersW = c+A+ · · · andF = φ+ψ+ · · · and
show how they relate to some aspects of topological Yang–Mills theory. We relate our construction
to the standard mathematical ideas of Cartan’sG-operation and interpretWandFas pair of algebraic
connection and curvature in a certain bigraded differential algebra.
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1. Introduction

In this work we intend to investigate a class of models defined by ladders of the type:

W ≡
D∑
i=0

ϕ1−i
i = c + A+

D∑
i=2

ϕ1−i
i , (1)

F ≡
D∑
i=0

η2−i
i = φ + ψ + B +

D∑
i=3

η2−i
i (2)
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containing the basic fields{c,A, φ,ψ} of TYMT as given in[1–3]. These ladders satisfy
connection-curvature like equations:

d̃W+ 1
2[W,W ] = F, (3)

d̃F+ [W,F ] = 0 (4)

with

d̃ = b+ d +
D∑
i=2

∆1−i
i . (5)

In this formulation, the presence of high component fieldsϕ1−i
i , η2−i

i in the laddersW, F,
and of additional operators∆1−i

i in the general derivativẽd offers an attempt to extend the

superfield approach of TYMT originally introduced in[2]. Here, an object written asXji is
supposed to have bidegree(i, j) wherei denotes form degree andj the ghost number. The
operators∆1−i

i are superderivations that acting on a fieldXrk produce a field with bidegree
(i+ k, r+1− i). The fieldB is a two-form, generally not depending on the curvature ofA,
F = dA+A2. The general derivativẽd contains the BRST operatorb, which is determined
from (3) and (4)after expanding these equations in terms with same form degree. The
operatord denotes the exterior derivative.

One motivation for the study of such models is to look for possible extensions of the
Chern–Simons term, the gauge anomaly and the Donaldson polynomials. The extensions
of the Chern–Simons term and the gauge anomaly were developed in[4] for a model defined
byD-dimensional laddersW = c+A+ϕ−1

2 +· · ·+ϕ1−D
D ,F = φ+ψ+B+η−1

3 +· · ·+η2−D
D

and derivatived̃ = b + d. The power of this formulation is that it allows to encode in a
single model both expressions for the Chern–Simons term and the gauge anomaly.

As for the Donaldson polynomials, the strategy is to consider descent equations:

bω0
4 + dω1

3 = 0, bω1
3 + dω2

2 = 0, bω2
2 + dω3

1 = 0,

bω3
1 + dω4

0 = 0, bω4
0 = 0 (6)

with the cyclesω4−i
i (0 ≤ i ≤ 4)being polynomials in the functional spaceV = {c,A, ϕ1−i

i ,

φ, ψ,B, η2−i
i ;dc,dA, dϕ1−i

i , dφ, dψ,dB, dη2−i
i }. When we consider a simple model, de-

fined on the functional spaceV = {c,A, φ,ψ,dc,dA, dφ, dψ}, one finds the generators of
Donaldson polynomials[1–5] as a possible solution to the descent equations, i.e.:

ω4
0 = Tr(1

2φ
2), ω3

1 = Tr(φψ), ω2
2 = Tr(φF + 1

2ψ
2),

ω1
3 = Tr(ψF), ω0

4 = Tr(1
2F

2). (7)

As it was shown in[5], for a model with laddersW = c + A, F = φ + ψ and differential
d̃ = b + d + ∆−1

2 + ∆−2
3 + ∆−3

4 we have obtained solutionsω4−i
i ≡ ω4−i

i (α1, . . . , α8),
which reduce to(7)when the parameters(α1, . . . , α8) are set to zero. The interesting aspect
of this solution is that it shows the existence of other quantum field theory models providing
a description for the Donaldson polynomials that differs from the approach of[1–3].

The purpose of our study is twofold. First, we intend to complete the study of models
described by ladders(1) and (2) [4–7]by considering the case of negative ghost number
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fields and a general derivative as in(5). Thus, we expect that the presence of negative
ghost number fields, the fieldB and operators∆1−i

i will modify the solution(7) giving a
generalization for the Donaldson polynomials for a model described by(1), (2) and (5).
In general, even though these extensions may not define interesting topological invariants,
they still contain the terms associated to the generators of Donaldson polynomials (see
Eqs. (110)–(114)).

Second, we try to put our work into a general perspective by showing how an appro-
priate choice of ladders and derivatived̃ allow us to describe several distinct models,
e.g. Yang–Mills, TYMT, Chern–Simons, BF, etc. In this respect, our model is a partic-
ular case of asuperfieldformalism which consists on accommodating gauge fields, ghosts,
antighosts, etc. as component of certain ladders. Essentially, these models can be divided
into two categories: (I) those admitting ladders satisfying connection-curvature like equa-
tions (e.g.[2–10]); and (II) those where this requirement is absent (e.g.[11–14]). The
ideas underlying the models in category (I) constitute a general approach for determin-
ing the BRST transformations for a set of fields given thatEqs. (3)–(5)are satisfied for
a certain choice of laddersW, F and derivatived̃. In these models, the general deriva-
tive containsat least the BRST operator and the exterior derivative, while the ladders
may contain several others component fields. The combined use of extended ladders and
derivatives has found applications in many different models (see, for example, the re-
cent development of[10] for the stochastic quantization of Yang–Mills theory in five
dimensions, and[5,7] for the description of TYMT and four-dimensional Yang–Mills
theory).

The main feature of our model lies on the existence of a(1,−1) derivationδ that allows us
to exhibit aparticular solution for the descentequations (6)once we have solvedbω4

0 = 0.
Mathematically,δ converts a problem of determining the cohomology ofbmodulod into a
simple one, the cohomology ofb alone. It was in this context thatδ has originally appeared
in [15], and since then it has been successfully applied in the algebraic renormalization of
several models[16,17]. Formally, we defineδ throughEqs. (26)–(28). In particular, from
(28)we obtain the form of the operators∆1−i

i as given in(31), and conditiond = [δ, b]. Theδ
operator is closely related to the so-called VSUSY symmetry discovered in the quantization
of Chern–Simons[18,19]and BF topological theories[20]. This symmetry is determined by
an odd derivationδτ parameterized by a vector fieldτ = τµ∂µ, and it satisfies an equation
of the type1 [δτ, b] = Lτ [21] withLτ the Lie derivative alongτ. Another common aspect is
that many VSUSY models are formulated adopting a superfield formalism[19–22], which
resembles(3)–(5). Nonetheless, in all these models the VSUSY operatorδτ is not restricted
by (26)–(28).

From a mathematical point of view, it is difficult to adopt the interpretation of[2,3] and
consider the negative ghost number fields as components of a curvature and connection on
theG-bundle2 ((P×C)/G,M×C/G). In addition, the operators∆1−i

i cannot be interpreted
as components of a general derivative in this bundle. This lead us to look for another
description.

1 In the literature of VSUSY there are some modifications on the form assumed by [δτ , b].
2 C andG denotes, respectively, the space of connections and the group of gauge transformations on a principal

fiber bundleP .
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One possibility is to use the construction of BRST differential algebras as given by
Dubois-Violette[8,9]. This treatment has been applied successfully in[5] for a model
containing only positive ghost number fields and the operators∆1−i

i . Our task here is to
introduce in a consistent way negative ghost number fields into the approach of BRST dif-
ferential algebras used in[5,8,9]. We recall that, even before the formulation of TQFT,
the two lowest componentsc, A of W were already geometrically understood as the
Maurer–Cartan form on the group of gauge transformations[23] and a connection one-form
on a principal bundle. Therefore, sincec is a field with ghost number one, it will be con-
sidered here as a one-form on the group of gauge transformations. We cannot think of
ϕ1−i
i (i ≥ 2) as a(i − 1)-form on the same space. In fact, ifϕ1−i

i were a(i − 1)-form
on the same space asc it would be natural to take the multiplication between them as
the exterior product of forms. Then,c ∧ ϕ1−i

i would be ai-form. Nonetheless, the ad-
ditive Z-graded structure (associated to the ghost number) of the space which they be-
long would forcec ∧ ϕ1−i

i to be a(i − 2)-form. Therefore, we will have an ambiguity if
we consider the positive and negative ghost number fields belonging to the same space.
The solution is to define the negative ghost number fieldϕ1−i

i as a(i − 1)-form on the
dual of the algebra of the group of gauge transformations. A similar argument shows that
the negative ghost number fieldsη2−i

i should be defined as(i − 2)-forms on this same
space.

The other problem, on the meaning ofd̃, is solved as a consequence of the first one,
e.g. once we know the spaceK(m,n) (m andn labeling, respectively, form degree and ghost
number) each of the fields inW andF belongs, we can define a spaceK = ⊕(m,n)K(m,n)
on which d̃ acts as a derivation. Indeed, we will see thatK = ⊕(m,n)∈Z+×ZK(m,n) will
have the structure of a bigraded differential algebra withK(m,n) being the space ofn-linear
antisymmetric maps onG or G∗, polynomial inC and with values inΩm(P), i.e.K(m,n) =
F(C×Gn,Ωm(P)) � F(C,∧n G∗ ⊗Ωm(P)) if n > 0 andK(m,n) = F(C×G∗n,Ωm(P)) �
F(C,

∧n G ⊗ Ωm(P)) if n < 0. Here,G denotes the Lie algebra of the group of gauge
transformations,Ω(P) the space of forms inP andC the space of connections onP . The
laddersW andF will be elements of a subalgebraH ⊂ K that is generated by the fields
ϕ1−i
i , dϕ1−i

i , η2−i
i , dη2−i

i , i ≥ 0.
Our work is organized as follows. InSection 2we introduce two generalized laddersW,
F whose components will accommodate the fields of our model. We impose the ladders
satisfy a couple of connection-curvature like equations that will be related to the BRST
transformations of the fields. We adopt a step-by-step procedure for determining the BRST
transformations, we introduce theδ operator, determine∆1−i

i and all constraints they satisfy.
In Section 3we discuss a four-dimensional model with ladders of the typeW = c+A+ϕ−1

2 ,
F = φ + ψ + B and differentiald̃ = b + d + ∆−1

2 + ∆−2
3 + ∆−3

4 . We analyze how the
expression for the Donaldson polynomials are modified by the presence of the fieldsϕ−1

2 ,
B and the operators∆−1

2 ,∆−2
3 ,∆−3

4 . In Section 4we show how the original zero-curvature
models of[6,7] are obtained as a particular case of imposingF = 0. In Section 5we give
a mathematical interpretation of our model. We relate our construction to the set up of
BRST algebras following closely the approach developed in[8,9]. We review the concepts
of gauge group and gauge algebra, and finally present an explicit realization of our model
in terms of the algebra of differential forms on a principal fiber bundleP .
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2. Constructing the model

Let G be a Lie group andG its Lie algebra whose generators we denote by{ea} (a =
1, . . . ,dimG). We denote the productea1 · · · ean := γca1···anec with γca1···an ∈ K (K = R

or C). Let us consider a set of fields and its derivatives{ϕ1−i
i , dϕ1−i

i , η
2−j
j , dη

2−j
j }, 0 ≤

i, j ≤ D with the upper and lower indices labeling, respectively, ghost number and form
degree. At this point, those fields are considered as Lie algebra valued maps defined on a
generic spacetimeM. We denote byV the space of local polynomials in the fields and their
derivatives. The total degree of a field is given by the sum of its form degree and ghost
number. We say thatα ∈ V is a homogeneous element of bidegree(m, n) if it is written as a
sum of terms with form degreem and ghost numbern. The total degree of a homogeneous
element of type(m, n) is thenm+n. Given two homogeneous elements of bidegrees(m, n),
(p, q), αnm, βqp ∈ V, we define the Lie-bracket: [α, β]

.=αβ − (−1)(m+n)(p+q)βα.

2.1. The BRST transformations

LetW,F andd̃ be given by(1), (2) and (5)and satisfying(3) and (4). Expanding(3) and
(4) in terms with same form degree we obtain (we adopt the convention∆1

0 := b,∆0
1 := d):

bϕ1−k
k + dϕ2−k

k−1+
k∑
i=2

∆1−i
i ϕ1−k+i

k−i +1

2

k∑
i=0

[ϕ1−i
i , ϕ1−k+i

k−i ] − η2−k
k = 0, 0 ≤ k ≤ D,

(8)

bη2−k
k + dη3−k

k−1 +
k∑
i=2

∆1−i
i η2−k+i

k−i +
k∑
i=0

[ϕ1−i
i , η2−k+i

k−i ] = 0, 0 ≤ k ≤ D, (9)

k∑
i=0

∆1−i
i ∆1−k+i

k−i = 0, 0 ≤ k ≤ D. (10)

Let us now suppose that it existsq, p ∈ N, 2 ≤ q ≤ D, 2 ≤ q ≤ D (the caseq = 1 was
studied in[5]) such that

ϕ1−i
i =

{
0 if i > q,

�= 0 if i ≤ q
and η

2−j
j =

{
0 if j > p,

�= 0 if j ≤ p.

Then(8) and (9)break into:

bϕ1−k
k =−dϕ2−k

k−1 −
k∑
i=2

∆1−i
i ϕ1−k+i

k−i − 1

2

k∑
i=0

[ϕ1−i
i , ϕ1−k+i

k−i ] + η2−k
k , 0 ≤ k ≤ q,

(11)

q+1∑
i=2

∆1−i
i ϕ

−q+i
q+1−i = −dϕ1−q

q − 1

2

q∑
i=1

[ϕ1−i
i , ϕ

−q+i
q+1−i] + η1−q

q+1, (12)
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k∑
i=k−q

∆1−i
i ϕ1−k+i

k−i = −1

2

q∑
i=k−q

[ϕ1−i
i , ϕ1−k+i

k−i ] + η2−k
k , k ≥ q+ 2, (13)

bη2−k
k = −dη3−k

k−1 −
k∑
i=2

∆1−i
i η2−k+i

k−i −
k∑
i=0

[ϕ1−i
i , η2−k+i

k−i ], 0 ≤ k ≤ p, (14)

p+1∑
i=2

∆1−i
i η

−p+1+i
p+1−i = −dη2−p

p −
p+1∑
i=1

[ϕ1−i
i , η

−p+1+i
p+1−i ], (15)

k∑
i=2

∆1−i
i η2−k+i

k−i = −
k∑
i=0

[ϕ1−i
i , η2−k+i

k−i ], k ≥ p+ 2. (16)

Eqs. (11) and (14)cannot be taken as the BRST transformations of the fields unless we
specify the form of the operators∆1−i

i (i ≥ 2) on their right-hand side. One way of dealing
with this is to impose

k∑
i=2

∆1−i
i ϕ1−k+i

k−i = 0, 0 ≤ k ≤ q, (17)

k∑
i=2

∆1−i
i η2−k+i

k−i = 0, 0 ≤ k ≤ p, (18)

which then fix the BRST transformations as

bϕ1−k
k = −dϕ2−k

k−1 −
1

2

k∑
i=0

[ϕ1−i
i , ϕ1−k+i

k−i ] + η2−k
k , 0 ≤ k ≤ q, (19)

bη2−k
k = −dη3−k

k−1 −
k∑
i=0

[ϕ1−i
i , η2−k+i

k−i ], 0 ≤ k ≤ p. (20)

2.2. Implementing the conditions[b, d] = 0 andb2 = 0

Let us now consider(10). Takingk = 0 andk = 1 we obtainb2 = 0 and [b, d] = 0.
These two conditions should be satisfied on the set{ϕ1−i

i , dϕ1−i
i , η

2−j
j , dη

2−j
j } (0 ≤ i ≤

q,0 ≤ j ≤ p). Implementing the condition [b, d] = 0 fixes the BRST transformation of
the field derivatives:

bdϕ1−k
k =

k∑
i=0

[dϕ1−i
i , ϕ1−k+i

k−i ] − dη2−k
k , 0 ≤ k ≤ q, (21)

bdη2−k
k =

k∑
i=0

[dϕ1−i
i , η2−k+i

k−i ] −
k∑
i=0

[ϕ1−i
i , dη2−k+i

k−i ], 0 ≤ k ≤ p. (22)
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The nilpotency ofb is satisfied on the fieldsϕ1−i
i , 0≤ i ≤ q with no further restriction, but

overη2−i
i , 0≤ i ≤ p we obtain

b2η2−k
k = 1

2

ε(q,k)∑
i=0

i∑
r=0

[[ϕ1−r
r , ϕ1−i+r

i−r ], η2−k+i
k−i ] −

ε(q,k)∑
i=0

i∑
r=0

[ϕ1−k+i
k−i , [ϕ1−r

r , η2−i+r
i−r ]]

−
ε(q,k)∑
i=0

[η2−i
i , η2−k+i

k−i ], 0 ≤ k ≤ p (23)

with ε(q, k) ≡ min{q, k} being the minimum element betweenq andk. Since the fields are
independent, in order to obtainb2η2−k

k = 0 we should have

0= 1

2

ε(q,k)∑
i=0

i∑
r=0

[[ϕ1−r
r , ϕ1−i+r

i−r ], η2−k+i
k−i ] −

ε(q,k)∑
i=0

i∑
r=0

[ϕ1−k+i
k−i , [ϕ1−r

r , η2−i+r
i−r ]] , (24)

0=
ε(q,k)∑
i=0

[η2−i
i , η2−k+i

k−i ]. (25)

The only way to vanish(25) without imposing any constraint on the fieldsη2−i
i is to

take ε(q, k) = k. With this choice, and using Jacobi identity, we have also satisfied
(24).

Since the conditionε(q, k) = k must be verified for all values ofk within 0≤ k ≤ p we
obtain the constraintp ≤ q.

2.3. Determination of∆1−i
i , i ≥ 2

The operators∆1−i
i are determined through the introduction of an operatorδ of bidegree

(1,−1) such that

W = eδc, (26)

F = eδφ, (27)

d̃ = eδb e−δ. (28)

These equations are equivalent to

δϕ1−k
k = (k + 1)ϕ−kk+1, 0 ≤ k ≤ q, (29)

δη2−k
k = (k + 1)η−k+1

k+1 , 0 ≤ k ≤ p, (30)

∆1−k
k = 1

k!
[δ, [δ, . . . , [δ, b] . . . ]] ,

= 1

k!

k−2∑
r=0

(−1)r
(k − 2)!

(k − 2− r)!r! δ
k−2−r[δ, d]δr. (31)
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Takingk = 1 in(31)givesd = [δ, b]. This condition should be implemented over each field.
Indeed, when applied overϕ1−i

i ,η2−j
j , 0≤ i ≤ q, 0≤ j ≤ pwe obtain theδ-transformation

of dϕi−1
i , dη2−j

j , 0≤ i ≤ (q− 1), 0≤ j ≤ (p− 1) as

δdϕ1−k
k = (k + 1)dϕ−kk+1, 0 ≤ k ≤ q− 2, (32)

δdϕ
2−q
q−1 = −dϕ1−q

q − q+ 1

2

q∑
i=1

[ϕ1−i
i , ϕ

−q+i
q+1−i] + (q+ 1)η−q+1

q+1 , (33)

δdη2−k
k = (k + 1)dη−k+1

k+1 , 0 ≤ k ≤ p− 2, (34)

δdη
3−p
p−1 = −dη2−p

p − (p+ 1)
p+1∑
i=1

[ϕ1−i
i , η

−p+1−i
p+1−i ]. (35)

Acting d = [δ, b] on dϕ1−q
q and usingp ≤ q we are let with

bδdϕ1−q
q = [δdϕ1−q

q , ϕ1
0] − δdη2−q

q + (q+ 1)
q−1∑
1=1

[dϕ1−i
i , ϕ

−q+i
q+1−i]

− q+ 1

2

q∑
i=1

[[ϕ1−i
i , ϕ

−q+i
q+1−i], ϕ

0
1]. (36)

In order to solve this equation we observe thatδdϕ
1−q
q is a field of bidegree(q + 2,−q),

therefore it can be written asδdϕ1−q
q = α

∑q

i=2[ϕ1−i
i , ϕ

−q−1+i
q+2−i ] which substituting on(36)

fixesα = −(q+ 1)/2 and reduces the last equation to

δdη2−q
q = (q+ 1)

q∑
i=2

[η2−i
i , ϕ

−q−1+i
q+2−i ]. (37)

If we suppose thatp < q we haveδdη2−q
q = 0 and this gives

∑q

i=2[η2−i
i , ϕ

−q−1+i
q+2−i ] = 0

which introduces an unwanted constraint on the fields. Therefore, we should considerp = q.
Eq. (37)then determinesδdη2−q

q . It is straightforward to show that applyingd = [δ, b] on

dη
2−q
q we will obtain the same equation forδdη2−q

q . We can also avoid the previous constraint
by settingη2−i

i = 0, which corresponds to takep = 0. These are the zero curvature models
of Section 4.

Once we have determined the action ofδ on the fields and their derivatives we have fixed
the form of the operators∆1−i

i . It is straightforward to show that the consistency equations
for ∆1−i

i , i ≥ 2:

k∑
i=2

∆1−i
i ϕ1−k+i

k−i = 0, 2≤ k ≤ q ≤ D, (38)

k∑
i=2

∆1−i
i ϕ1−k+i

k−i = −dϕ2−k
k−1 −

1

2

k−1∑
i=1

[ϕ1−i
i , ϕ1−k+i

k−i ], k = q+ 1, (39)
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k∑
i=k−q

∆1−i
i ϕ1−k+i

k−i = −1

2

q∑
i=k−q

[ϕ1−i
i , ϕ1−k+i

k−i ], q+ 2≤ k ≤ D, (40)

k∑
i=2

∆1−i
i η2−k+i

k−i = 0, 2≤ k ≤ q ≤ D, (41)

k∑
i=2

∆1−i
i η2−k+i

k−i = −dη3−k
k−1 −

k−1∑
i=1

[ϕ1−i
i , η2−k+i

k−i ], k = q+ 1, (42)

k∑
i=k−q

∆1−i
i η2−k+i

k−i = −
q∑

i=k−q
[ϕ1−i
i , η2−k+i

k−i ], q+ 2≤ k ≤ D (43)

are satisfied for this choice of∆1−i
i .

For convenience we collect below all transformations of our model (withp = q):

bϕ1−k
k = −dϕ2−k

k−1 −
1

2

k∑
i=0

[ϕ1−i
i , ϕ1−k+i

k−i ] + η2−k
k , 0 ≤ k ≤ q, (44)

bη2−k
k = −dη3−k

k−1 −
k∑
i=0

[ϕ1−i
i , η2−k+i

k−i ], 0 ≤ k ≤ q, (45)

bdϕ1−k
k =

k∑
i=0

[dϕ1−i
i , ϕ1−k+i

k−i ] − dη2−k
k , 0 ≤ k ≤ q, (46)

bdη2−k
k =

k∑
i=0

[dϕ1−i
i , η2−k+i

k−i ] −
k∑
i=0

[ϕ1−i
i , dη2−k+i

k−i ], 0 ≤ k ≤ q, (47)

δϕ1−k
k = (k + 1)ϕ−kk+1, 0 ≤ k ≤ q, (48)

δdϕ1−k
k = (k + 1)dϕ−kk+1, 0 ≤ k ≤ q− 2, (49)

δdϕ
2−q
q−1 = −dϕ1−q

q − q+ 1

2

q∑
i=1

[ϕ1−i
i , ϕ

−q+i
q+1−i], (50)

δdϕ1−q
q = −q+ 1

2

q∑
i=2

[ϕ1−i
i , ϕ

−q−1+i
q+2−i ], (51)

δη2−k
k = (k + 1)η−k+1

k+1 , 0 ≤ k ≤ q, (52)
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δdη2−k
k = (k + 1)dη−kk+1, 0 ≤ k ≤ q− 2, (53)

δdη
3−q
q−1 = −dη2−q

q − (q+ 1)
q∑
i=1

[ϕ1−i
i , η

−q+1−i
q+1−i ], (54)

δdη2−q
q = −(q+ 1)

q∑
i=2

[ϕ1−i
i , η

−q+i
q+2−i]. (55)

It is important to notice that in the caseq = D, Eqs. (50), (51), (54) and (55)vanish trivially.
In this case, allδ transformations of the field derivatives are encoded on(49) and (53)that
essentially mean [δ, d] = 0. Then, from(31) we have∆1−i

i = 0, i ≥ 2 and consequently
all consistencyequations (38)–(43)will vanish.

3. A model with q = 2, D = 4

Let

W = c + A+ ϕ−1
2 , (56)

F = φ + ψ + B, (57)

d̃ = b+ d +∆−1
2 +∆−2

3 +∆−3
4 . (58)

The BRST transformations corresponding to the generalized connection and curvature
equations (3)–(5)are given by

bc= −c2 + φ, (59)

bA= −dc− [c,A] + ψ, (60)

bϕ−1
2 = −F − [c, ϕ−1

2 ] + B, (61)

bφ = −[c, φ], (62)

bψ = −dφ − [c, ψ] − [A, φ], (63)

bB= −dψ − [c, B] − [A,ψ] − [ϕ−1
2 , φ], (64)

theδ transformations have the form:

δc = A, δdc= dA, (65)

δA = 2ϕ−1
2 , δdA= −dϕ−1

2 − 3[A, ϕ−1
2 ], (66)

δϕ−1
2 = 0, δdϕ−1

2 = −3ϕ−1
2 ϕ−1

2 , (67)

δφ = ψ, δdφ = dψ, (68)

δψ = 2B, δdψ = −dB− 3[A,B] − 3[ϕ−1
2 , ψ], (69)
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δB = 0, δdB= −3[ϕ−1
2 , B] (70)

and the∆ transformations are given by

∆−1
2 c = 0 (71)

∆−1
2 A = −3

2dϕ
−1
2 − 3

2[A, ϕ−1
2 ], (72)

∆−1
2 ϕ−1

2 = −3
2ϕ

−1
2 ϕ−1

2 , (73)

∆−1
2 φ = 0, (74)

∆−1
2 ψ = −3

2dB− 3
2[A,B] − 3

2[ϕ−1
2 , ψ], (75)

∆−1
2 B = −3

2[ϕ−1
2 , B], (76)

∆−1
2 dc= 0, (77)

∆−1
2 dA= −3

2[ϕ−1
2 ,dA] − 3

2[A, dϕ−1
2 ], (78)

∆−1
2 dϕ−1

2 = −3
2[ϕ−1

2 , dϕ−1
2 ], (79)

∆−1
2 dφ = 0, (80)

∆−1
2 dψ = −3

2[B,dA] − 3
2[A,dB] − 3

2[ψ, dϕ−1
2 ] − 3

2[ϕ−1
2 , dψ], (81)

∆−1
2 dB= −3

2[B, dϕ−1
2 ] − 3

2[ϕ−1
2 ,dB], (82)

∆−2
3 c = 1

2dϕ
−1
2 + 1

2[A, ϕ−1
2 ], (83)

∆−2
3 A = 1

2ϕ
−1
2 ϕ−1

2 , (84)

∆−2
3 ϕ−1

2 = 0, (85)

∆−2
3 φ = 1

2dB+ 1
2[A,B] + 1

2[ϕ−1
2 , ψ], (86)

∆−2
3 ψ = 1

2[ϕ−1
2 , B], (87)

∆−2
3 B = 0, (88)

∆−2
3 dc= 1

2[ϕ−1
2 ,dA] + 1

2[A, dϕ−1
2 ], (89)

∆−2
3 dA= 1

2[ϕ−1
2 , dϕ−1

2 ], (90)

∆−2
3 dϕ−1

2 = 0, (91)

∆−2
3 dφ = 1

2[B,dA] + 1
2[A,dB] + 1

2[ψ, dϕ−1
2 ] + 1

2[ϕ−1
2 , dψ], (92)

∆−2
3 dψ = 1

2[B, dϕ−1
2 ] + 1

2[ϕ−1
2 ,dB], (93)
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∆−2
3 dB= 0, (94)

∆−3
4 ≡ 0. (95)

Let us consider now the system of descent equations given in(6). We can rewrite it in the
form (b+d)ω̃ ≡ (d̃−∆)ω̃ = 0 with ω̃

.=ω4
0+ω3

1+ω2
2+ω1

3+ω0
4 and∆

.=∆−1
2 +∆−2

3 +∆−3
4 .

A particular solution is given by

ω̃ = eδ(ω4
0 +Ω) (96)

with Ω
.=Ω3

1 +Ω2
2 +Ω1

3 +Ω0
4 satisfying

bΩ0
4 = ∆−1

2 Ω2
2 − 2∆−2

3 Ω3
1 + 3∆−3

4 ω4
0, (97)

bΩ1
3 = ∆−1

2 Ω3
1 − 2∆−2

3 ω4
0, (98)

bΩ2
2 = ∆−1

2 ω4
0, (99)

bΩ3
1 = 0. (100)

In terms of theseΩ’s we have

ω0
4 =

δ4

4!
ω4

0 +
δ3

3!
ω3

1 +
δ2

2!
Ω2

2 + δΩ1
3 +Ω0

4, (101)

ω1
3 =

δ3

3!
ω4

0 +
δ2

2!
Ω3

1 + δΩ2
2 +Ω1

3, (102)

ω2
2 =

δ2

2!
ω4

0 + δΩ3
1 +Ω2

2, (103)

ω3
1 = δω4

0 +Ω3
1. (104)

Here we notice that the cycles exhibited in(101)–(104)are obtained fromΩ’s by the
action ofδ. TheseΩ’s are solutions of the intermediateequations (97)–(100), which do not
involve the exterior derivative. It is the combination of theδ-operator and these equations
((97)–(100)) that allow us to transform a problem of cohomology ofb modulod (6) into
a simple one. In order to solve(101)–(104)we should first determineω4

0, the solution of
bω4

0 = 0. Our intention is to analyze how the cocycle Tr(1/2)φ2 (which appears in[1,3])
is modified by the presence of the negative ghost number fieldϕ−1

2 , the fieldB, and the
operators∆−1

2 ,∆−2
3 ,∆−3

4 . Therefore we take

ω4
0 = Tr(1

2φ
2). (105)

Then, we obtainΩ’s solving(97)–(100). Replacing them in(101)–(104)we obtain

ω3
1 = Tr{2

3β1(c
2ψ − c2dc+ c[A, φ])+ 2

3(β2 − β4)(φψ − φdc)

+ 2
3β3(−c2ψ + c2dc− φψ + φdc− c[A, φ])

+ σ(c2dc+ cdφ + φdc)+ 1
3φψ + 2

3φdc}, (106)



52 M. Carvalho / Journal of Geometry and Physics 51 (2004) 40–70

ω2
2 = Tr{2

3β1(2c
2B − c2dA+ 2A2φ + 2c[A,ψ] − c[A,dc] + 2c[ϕ−1

2 , φ]

+ 2
3(β2 − β4)(2φB − φdA+ ψ2 − ψdc)+ 2

3β3(−2c2B + c2dA− 2A2φ

−2φB + φdA− ψ2 + ψdc− 2c[A,ψ] + c[A,dc] − 2c[ϕ−1
2 , φ])

+α1(c
2A2 − c2B + c2dA− c[ϕ−1

2 , φ])+ α2(A
2φ − φB + φdA)

+α3(c
2B + cdψ + φB + c[A,ψ] + c[ϕ−1

2 , φ])

+α4(−c2dA− cdψ − φdA− c[A,dc])+ α5(Adφ+1
2ψ

2 + φB−φdA−1
2dcdc)

+α6(−1
2ψ

2 + ψdc− φB + φdA− 1
2dcdc)+ σ(c2dA+ cdψ + Adφ

+φdA+ ψdc+ c[A,dc])− 1
3φB + 2

3φdA− 1
6ψ

2 + 2
3ψdc}, (107)

ω1
3 = Tr{2β1(

2
3c

2dϕ−1
2 + A2ψ − 1

3A
2dc+ c2[A, ϕ−1

2 ] + c[A,B] − 1
3c[A,dA]

+ c[ϕ−1
2 , ψ] − 1

3c[ϕ
−1
2 ,dc] + A[ϕ−1

2 , φ])+ 2β2(
2
3φdϕ

−1
2 + ψB − 1

3ψdA

− 1
3Bdc+ A[ϕ−1

2 , φ])+ β3(−1
3c

2dϕ−1
2 + cdB− 2A2ψ + 2

3A
2dc− 1

3φdϕ
−1
2

−2ψB + 2
3ψdA+ 2

3Bdc− c2[A, ϕ−1
2 ] − c[A,B] + 2

3c[A,dA] − c[ϕ−1
2 , ψ]

+ 2
3c[ϕ

−1
2 ,dc] − 3A[ϕ−1

2 , φ])+ β4(−4
3φdϕ

−1
2 − ψB − 1

3ψdA− 1
3Bdc

+dcdA− A[ϕ−1
2 , φ])+ β5(c

2ϕ−1
2 A+ cA3 + cϕ−1

2 ψ − cϕ−1
2 dc− cBA

+ cdAA− Aφϕ−1
2 )+ β6(A

2dc− ϕ−1
2 dφ − Bdc+ dcdA)

+β7(A
2ψ − ϕ−1

2 dφ−Bdc+dcdA)+ β8(c
2dϕ−1

2 + cdB+ φdϕ−1
2 + c[A,dA]

+ c[ϕ−1
2 ,dc])+ β9(Adψ + 2ϕ−1

2 dφ + ψdA+ 2Bdc− 3dcdA)

+α1(−c2dϕ−1
2 − c2[A, ϕ−1

2 ] − c[A,B] + c[A,dA] − c[ϕ−1
2 , ψ]−A[ϕ−1

2 , φ])

+α2(A
2ψ − φdϕ−1

2 − ψB + ψdA− A[ϕ−1
2 , φ])+ α3(−cdB+ 2A2ψ

+Adψ + ψB + A[ϕ−1
2 , φ])+ α4(c

2dϕ−1
2 + cdB− 2A2dc− Adψ

+φdϕ−1
2 − ψdA+ 3c2[A, ϕ−1

2 ] + 3c[A,B] − 2c[A,dA] + 3A[ϕ−1
2 , φ]

+3c[ϕ−1
2 , ψ] − 2c[ϕ−1

2 ,dc])+ α5(Adψ + 2ϕ−1
2 dφ + φdϕ−1

2 + 3ψB − ψdA

−dcdA+ 3A[ϕ−1
2 , φ])+ α6(−φdϕ−1

2 − 3ψB + 2ψdA+ 2Bdc− dcdA

−3A[ϕ−1
2 , φ])+ σ(−1

2c
2dϕ−1

2 − 1
2cdB+ A2dc+ Adψ + ϕ−1

2 dφ − 1
2φdϕ

−1
2

+ψdA+ Bdc− 3
2c

2[A, ϕ−1
2 ] − 3

2c[A,B] + c[A,dA] − 3
2c[ϕ

−1
2 , ψ]

+ c[ϕ−1
2 ,dc]−3

2A[ϕ−1
2 , φ])−1

3φdϕ
−1
2 − ψB + 2

3ψdA+ 2
3Bdc− A[ϕ−1

2 , φ]},
(108)

ω0
4 = Tr{2β1(c

2ϕ−1
2 ϕ−1

2 + 4
3A

2B − 1
3A

2dA+ ϕ−1
2 ϕ−1

2 φ + c[A2, ϕ−1
2 ] + c[A, dϕ−1

2 ]

+ c[ϕ−1
2 , B] + 4

3A[ϕ−1
2 , ψ] − 1

3A[ϕ−1
2 ,dc])+ 2β2(

4
3ϕ

−1
2 ϕ−1

2 φ + ψdϕ−1
2

+ 2
3B

2 − 1
3BdA− 1

3dcdϕ−1
2 + 4

3A[ϕ−1
2 , ψ] − 1

3A[ϕ−1
2 ,dc])

+β3(−c2ϕ−1
2 ϕ−1

2 − 2
3A

2B + 2
3A

2dA+ AdB− 11
3 ϕ

−1
2 ϕ−1

2 φ − ψdϕ−1
2 − 4

3B
2

+ 2
3BdA+ 2

3dcdϕ−1
2 − c[A2, ϕ−1

2 ] − c[A, dϕ−1
2 ] − c[ϕ−1

2 , B] − 10
3 A[ϕ−1

2 , ψ]
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+ 4
3A[ϕ−1

2 ,dc])+ β4(
4
3ϕ

−1
2 ϕ−1

2 φ − ψdϕ−1
2 + 2

3B
2 − 7

3BdA− 1
3dcdϕ−1

2

+dAdA+ 4
3A[ϕ−1

2 , ψ] − 7
3A[ϕ−1

2 ,dc])+ β5(2c
2ϕ−1

2 ϕ−1
2 − cϕ−1

2 dA

+2cdAϕ−1
2 − cdϕ−1

2 A+ A4 + A2B − A2dA− Aϕ−1
2 dc+ 2ϕ−1

2 ϕ−1
2 φ

+2c[A2, ϕ−1
2 ] + 2c[ϕ−1

2 , B] + A[ϕ−1
2 , ψ])+ β6(A

2dA− ϕ−1
2 dψ − BdA

−dcdϕ−1
2 + dAdA− A[ϕ−1

2 ,dc])+ β7(2A
2B − ϕ−1

2 dψ − BdA− dcdϕ−1
2

+dAdA+ 2A[ϕ−1
2 , ψ] − 3A[ϕ−1

2 ,dc])+ β8(−3c2ϕ−1
2 ϕ−1

2 + 2A2dA

+AdB− 3ϕ−1
2 ϕ−1

2 φ + ψdϕ−1
2 − 3c[A2, ϕ−1

2 ] − 3c[ϕ−1
2 , B] + 3c[ϕ−1

2 ,dA]

+A[ϕ−1
2 ,dc])+ β9(−6A2B − AdB+ 4ϕ−1

2 dψ − ψdϕ−1
2 + 4BdA

+3dcdϕ−1
2 − 3dAdA− 6A[ϕ−1

2 , ψ] + 9A[ϕ−1
2 ,dc])+ α1(−2c2ϕ−1

2 ϕ−1
2

−A2B + A2dA− 2ϕ−1
2 ϕ−1

2 φ − 2c[A2, ϕ−1
2 ] − c[A, dϕ−1

2 ] − 2c[ϕ−1
2 , B]

+ c[ϕ−1
2 ,dA] − A[ϕ−1

2 , ψ])+ α2(A
2B − 2ϕ−1

2 ϕ−1
2 φ − ψdϕ−1

2 − B2 + BdA

−A[ϕ−1
2 , ψ])+ α3(−A2B − AdB+ 2ϕ−1

2 ϕ−1
2 φ + ϕ−1

2 dψ + B2 + A[ϕ−1
2 , ψ])

+α4(
9
2c

2ϕ−1
2 ϕ−1

2 + 6A2B − 3A2dA+ AdB+ 9
2ϕ

−1
2 ϕ−1

2 φ − ϕ−1
2 dψ + ψdϕ−1

2

−BdA+ 9
2c[A

2, ϕ−1
2 ] + 3c[A, dϕ−1

2 ] + 9
2c[ϕ

−1
2 , B] − 3

2c[ϕ
−1
2 ,dA]

+6A[ϕ−1
2 , ψ] − 3A[ϕ−1

2 ,dc])+ α5(−3A2B − 1
2AdB+ 6ϕ−1

2 ϕ−1
2 φ

+2ϕ−1
2 dψ + 5

2ψdϕ
−1
2 + 3B2 − BdA+ 1

2dcdϕ−1
2 − 1

2dAdA+ 3A[ϕ−1
2 , ψ]

+ 3
2A[ϕ−1

2 ,dc])+ α6(−6ϕ−1
2 ϕ−1

2 φ − 3ψdϕ−1
2 − 3B2 + 3BdA+ 2dcdϕ−1

2

− 1
2dAdA− 6A[ϕ−1

2 , ψ] + 3A[ϕ−1
2 ,dc])+ γ1(c

2ϕ−1
2 ϕ−1

2 + ϕ−1
2 ϕ−1

2 φ

+ c[A2, ϕ−1
2 ] + c[ϕ−1

2 , B] − c[ϕ−1
2 ,dA])+ γ2(−A2B + A2dA

−A[ϕ−1
2 , ψ] + A[ϕ−1

2 ,dc])+ γ3(2A
2B + AdB+ ψdϕ−1

2 − dcdϕ−1
2

+2A[ϕ−1
2 , ψ] − A[ϕ−1

2 ,dc])+ γ4(−A2B + 2ϕ−1
2 ϕ−1

2 φ + ϕ−1
2 dψ + B2

−BdA+ A[ϕ−1
2 , ψ])+ γ5(A

2B − ϕ−1
2 dψ − BdA+ dAdA+ A[ϕ−1

2 , ψ]

−2A[ϕ−1
2 ,dc])+ σ(−3

2c
2ϕ−1

2 ϕ−1
2 − 3A2B + A2dA− 1

2AdB− 3
2ϕ

−1
2 ϕ−1

2 φ

+ϕ−1
2 dψ − 1

2ψdϕ
−1
2 + BdA+ dcdϕ−1

2 − 3
2c[A

2, ϕ−1
2 ] − 3

2c[A, dϕ
−1
2 ]

− 3
2c[ϕ

−1
2 , B] − 3A[ϕ−1

2 , ψ] + 2A[ϕ−1
2 ,dc])− 5

3ϕ
−1
2 ϕ−1

2 φ − ψdϕ−1
2 − 5

6B
2

+ 2
3BdA+ 2

3dcdϕ−1
2 − 5

3A[ϕ−1
2 , ψ] + 2

3A[ϕ−1
2 ,dc]}. (109)

Considered in this form, this previous solution forω1−i
i does not relate to any familiar model.

Here, let us consider some specific cases. First, let us consider the two-formB decomposing
asB = F+B̂ [5] withF the curvature ofA. In this decomposition, the two-form̂B should be
introduced in order to maintain the nilpotency of the BRST transformation ofϕ−1

2 . We have
b2ϕ−1

2 = 0 ⇒ bB̂ = −[c, B̂] + [φ, ϕ−1
2 ]. Then, takingβ2 = 1 with all other parameters

set to zero we obtainω1−i
i as

ω4
0 = Tr(1

2φ
2), (110)
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ω3
1 = Tr(φψ), (111)

ω2
2 = Tr(φF + 1

2ψ
2 + φB̂), (112)

ω1
3 = Tr(ψF + φDAϕ−1

2 + ψB̂), (113)

ω0
4 = Tr(1

2F
2 + 1

2B̂
2 + FB̂ + ϕ−1

2 ϕ−1
2 φ + ψDAϕ−1

2 ). (114)

We observe that the inclusion of additional fieldsϕ−1
2 , B in the ladders, and of additional

derivations∆1−i
i in d̃modify the previous solution(7)of the descent equations. Nonetheless,

(110)–(114)still containsthe terms associated to the Donaldson polynomials. A similar be-
havior has been observed in[5] for the caseϕ−1

2 = 0,B �= F , which also generates a solution
including additional terms to the Donaldson polynomials. Now, if we look at our general
solution(106)–(109)we see that they represent a family of solutions parameterized by 21 pa-
rameters(β1, . . . , σ)which writes as̃ω = (1/2)(φ+ψ+F)2+((1/2)B̂2+φB̂+ψB̂+FB̂+
φDAϕ

−1
2 +ψDAϕ−1

2 +ϕ−1
2 ϕ−1

2 φ)+Θ(β1, . . . , σ). Here, there is no possibility to choose the
parameters(β1, . . . , σ) in such a way that̃ω reduces to the Donaldson polynomials. From
[5], it seems then that the only cases having a complete agreement with(7) areϕ−1

2 = 0,
B = F that gives the same result as(7), andϕ−1

2 = 0, B = 0 that represents a family of
solutions parameterized by points ofR8 and such that to the origin we have associated(7),
i.e.ω̃ = (1/2)(φ+ψ+F)2+Θ(α1, . . . , α8)with ω̃|(α1,... ,α8)=0 = (1/2)(φ+ψ+F)2. This
solution is interesting because it shows Donaldson generators as a particular case of a more
general expression. Therefore, it may be possible that other extended formulations may ad-
mit, as a limit case, other topological invariants. Nonetheless, up to the analysis of this exam-
ple, it is not known if a choice of higher components ladders would generate a solution of this
type.

The cycleω0
4 is particularly important since it defines a BRST invariant action:

S =
∫

Tr

(
1

2
F2 + 1

2
B̂2 + FB̂ + ϕ−1

2 ϕ−1
2 φ + ψDAϕ−1

2

)
, (115)

which can be taken as the starting point for a pertubative analysis of our model. This
action incorporates, from the beginning, extra terms onϕ−1

2 , B̂ in addition to the usual
non-gauge fixed TYMT action

∫
Tr F2. Thus, in much the same way as it was done in[24],

we may interpret the fieldsϕ−1
2 , B̂ as part of the additional fields necessary to perform

the gauge fixing of the action
∫

Tr F2. If we want to proceed further on finding a fully
gauge fixed action, we will have to introduce other fields (antifields, antighosts) with total
degree different than 0 and 1, which will be accommodated as component fields of other
ladders.

Another application of the model given by(56)–(58)is on the description of four-dimen-
sional BF model. In fact, consider the cycleω0

4 (109). Let us takeγ1 = 1,γ2 = 0,γ3 = 1/3,
γ4 = −(1/2), γ5 = −1/6,β2 = 1 with all other parameters equal to zero. Then, we obtain
an invariant action given by3

3 Here, we may also interpretϕ−1
2 as one of the fields necessary to perform the gauge fixing of the BF action.
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S =
∫
ω0

4 =
∫

Tr(BF+ ψDAϕ−1
2 + ϕ−1

2 ϕ−1
2 φ + B[c, ϕ−1

2 ]

+ c2ϕ−1
2 ϕ−1

2 − c[ϕ−1
2 , F ]), (116)

which contains the usual term of the BF model. It is important to notice that this derivation
of four-dimensional BF action is based on a pair of connection and curvature ladders(56)
and (57)with the assumption thatB �= F . In contrast, the usual superfield formulation of
D-dimensional BF models[6,25] employs a gauge ladder together with a matter ladderB
having the two-formB as its highest component field, i.e.B|D = B. In Section 4.2we will
obtain the equivalent of action(116)for the zero curvature formulation of four-dimensional
BF model.

4. The zero-curvature models

As we have seen, the model presented inSection 2is based on gauge and curvature
laddersW,F satisfyingd̃W+ (1/2)[W,W] = F, d̃F+ [W,F] = 0. As a limit case of this
model we can pose a zero curvature conditionF = 0 that reduces the previous equations
to d̃W+ (1/2)[W,W] = 0. Here,(44)–(55)become

bϕ1−k
k = −dϕ2−k

k−1 −
1

2

k∑
i=0

[ϕ1−i
i , ϕ1−k+i

k−i ], 0 ≤ k ≤ q, (117)

bdϕ1−k
k =

k∑
i=0

[dϕ1−i
i , ϕ1−k+i

k−i ], 0 ≤ k ≤ q, (118)

δϕ1−k
k = (k + 1)ϕ−kk+1, 0 ≤ k ≤ q, (119)

δdϕ1−k
k = (k + 1)dϕ−kk+1, 0 ≤ k ≤ q− 2, (120)

δdϕ
2−q
q−1 = −dϕ1−q

q − q+ 1

2

q∑
i=1

[ϕ1−i
i , ϕ

−q+i
q+1−i], (121)

δdϕ1−q
q = −q+ 1

2

q∑
i=2

[ϕ1−i
i , ϕ

−q−1+i
q+2−i ] (122)

that agree with the same equations obtained in the non-complete ladder case (i.e. with
q �= D) of [7]. In our approach we treat both casesq = D (referred in[6] as the complete
ladder case) andq �= D in the same way, with the fundamental equations given as above.
Indeed, the equations for the complete ladder case are a particular case of(117)–(122)when
one takesq = D. Basically, what differs one and another situation is just the definition
of the generalized derivative that assumes the formd̃ = b + d whenq = D andd =
b + d + ∑D

i=2∆
1−i
i whenq �= D. The main role of the operators∆1−i

i , i ≥ 2 is to avoid
possible constraints that would arise from the zero curvature condition in the case ofq �= D.
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For example, in the absence of∆1−i
i we would have from(39) and (40)the two constraints

below

dϕ1−q
q = −1

2

q∑
i=1

[ϕ1−i
i , ϕ

−q+i
q+1−i], 0=

q∑
i=k−q

[ϕ1−i
i , ϕ1−k+i

k−i ], k ≥ q+ 2.

As we have pointed out at the end ofSection 2, q = D determines∆1−i
i = 0 and this

explains why these operators are absent in the complete ladder case of[6].
Let us consider general descent equations of the type

bωG+iD−i + dωG+i+1
D−i−1 = 0, 0 ≤ i ≤ D− 1, bωG+D0 = 0. (123)

This system of descent equations can be solved following the same procedure ofSection 3,
e.g. writing ω̃ ≡ ∑G+D

i=0 ωG+Di and∆ ≡ ∑D
i=2∆

1−i
i the descent equations assume the

form 0 = (b + d)ω̃ = (d̃ − ∆)ω̃. A particular solution isω̃
.=eδ(ωG+D0 + Ω) with Ω ≡∑D

i=1Ω
G+D−i
i satisfying

bΩG+D−k
k = (−1)k(k − 1)∆1−k

k ωG+D0 +
k−1∑
i=2

(−1)i(i− 1)∆1−i
i ΩG+D−k+i

k−i ,

1≤ k ≤ D. (124)

We note that whenq = D we haveΩ = 0 and∆ = 0, thenω̃ = eδωG+D0 andd̃ = b + d.
WhenG+D = 4, (124)agrees with(97)–(100).

4.1. The Chern–Simons term

Consider a model withq = 3,D = 3 andF = 0. Let us take the cocycleω0
3 such that

b
∫
ω0

3 = 0. This will be related to the Chern–Simons form. As it was shown in[6], ω0
3

can be obtained by expandingω̃ = eδω3
0 = eδ((1/3!)Tr c3) and taking the terms with form

degree equal to 3. This results in

S = 1

2

∫
Tr

(
AF− 1

3
A3

)
− 1

2
b

∫
Tr(cϕ−2

3 + Aϕ−1
2 ). (125)

Nonetheless, the presence of the fieldϕ−1
2 allow us to consider a more general solution by

introducing on(125)the term∫ (
dcϕ−1

2 + 1

2
AdA

)
. (126)

Then, the action given by(125)+ (126) is also possible and represents a contribution due
to the extra fieldϕ−1

2 .

4.2. BF system

TheD-dimensional BF system can be formulated as a zero curvature system by intro-
ducing two complete ladders[6]:
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W =
D∑
i=0

ϕ1−i
i , B =

D∑
i=0

B
D−2−j
j , (127)

whereW is a gauge ladder with total degree 1, which satisfies a zero curvature condition.
The other ladderB has total degree(D−2) and satisfies̃dB+ [W,B] = 0. For the complete
ladder case, we have seen thatd̃ = b+ d. Let us consider the caseD = 4. Here, the gauge
and the matter ladderB are taken as

W = c + A+ ϕ−1
2 + ϕ−2

3 + ϕ−3
4 , (128)

B = φ + ψ + B + B−1
3 + B−2

4 . (129)

The BRST transformations for the component fields follow from the equations satisfied by
W andB and are given by

bc= −c2, (130)

bA= −dc− [c,A], (131)

bϕ−1
2 = −F − [c, ϕ−1

2 ], (132)

bϕ−1
3 = −dϕ−1

2 − [c, ϕ−1
3 ] − [A, ϕ−1

2 ], (133)

bϕ−3
4 = −dϕ−1

3 − [c, ϕ−3
4 ] − [A, ϕ−2

3 ] − 1
2[ϕ−1

2 , ϕ−1
2 ], (134)

bφ = −[c, φ], (135)

bψ = −dφ − [c, ψ] − [A, φ], (136)

bB= −dψ − [c, B] − [A,ψ] − [ϕ−1
2 , φ], (137)

bB−1
3 = −dB− [c, B−1

3 ] − [A,B] − [ϕ−1
2 , ψ] − [ϕ−1

3 , φ], (138)

bB−2
4 = −dB−1

3 − [c, B−2
4 ] − [A,B−1

3 ] − [ϕ−1
2 , B] − [ϕ−2

3 , ψ] − [ϕ−3
4 , φ]. (139)

The BRST transformations forφ,ψ,B agree with the ones given in(62)–(64). Nonetheless,
sinceW is a connection with zero curvature, the BRST transformations for the components
c,A, ϕ−1

2 differ from (59)–(61).
From[6] we obtain an invariant action as

S =
∫

TrB(dW+W2)|04, (140)

S =
∫

Tr(BF+ ψDAϕ−1
2 + ϕ−1

2 ϕ−1
2 φ + B[c, ϕ−1

2 ] + φ[c, ϕ−3
4 ] + ψ[c, ϕ−2

3 ]

+φDAϕ−2
3 + B−1

3 DAc + B−2
4 c2). (141)

This previous action agrees with the one given in(116)except by the presence of higher
components fieldsϕ−2

3 , ϕ−3
4 , B−1

3 , B−2
4 that does not enter in the ladders(56) and (57).

Conversely, there are also the presence of terms onϕ−1
2 in (116)that do not appear in(141),
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those terms being brought by the derivations∆1−i
i , which are absent on the generalized

derivative d̃ = b + d. Both approaches are entirely different since they are based on
ladders that satisfy different equations. As for the general formulation of BF models in
dimensions other thanD = 4, we emphasize that a matter ladderB, satisfying d̃B +
[W,B] = 0, should be used to accommodate the fieldB. It is a particular feature of
four dimensions that we can take the ladderB (57) as the generalized curvature ofW
(56).

5. Mathematical aspects

5.1. BRSTG-operation

In this section we review some basic definitions concerning the structure of graded com-
mutative differential algebras and BRSTG-operations. Although our approach is based on
the formalism exposed in[8,9] we will adopt some definitions in a different context.

A Z-graded supercommutative algebrais a structure defined by(A, ∗) such that: (1)
(A, ∗) is an algebra in the usual sense (we are considering algebras defined over a field
K that can beR or C), (2) the graded structure is defined by a direct sum decomposition
A = ⊕m∈ZAm such thatAm ∗An ⊂ Am+n and the supercommutativity stands forα ∗β =
(−1)mnβ ∗ α ∀α ∈ Am, ∀β ∈ An. From now on we will use the term commutative as
meaning supercommutative. All graded (bigraded) structure to be considered here will be
defined either overZ orZ+ .=N ∪ {0}.

A superderivation onA of degree kis a linear mapΨ : A• → A•+k such thatΨ(αβ) =
(Ψα)β + (−1)kmαΨβ ∀α ∈ Am. We denote the set ofk-superderivations onA asDk(A).
Defining a product between two superderivations onA as the composition map we have
thatD(A) ≡ ∑

k∈ZD
k(A) together with this product becomes a graded algebra.

A graded commutative differential algebrais a structure defined by(A, ∗, d) with (1)
(A, ∗) a graded commutative algebra and (2)d a superderivation onA of degree 1 such
thatd2 = 0.

A G-operation is defined by(A, ∗, d, I, L) with (1) (A, ∗, d) a graded commutative
differential algebra and (2)I : G → D−1(A), X → IX andL : G → D0(A), X →
LX

.=[d, IX] such thatI[X,Y ] = LXIY − IYLX andL[X,Y ] = LXLY − LYLX ∀X, Y ∈ G.
We extend these two operations toG⊗A asIX(Y ⊗ α) .=Y ⊗ IXα, LX(Y ⊗ α) .=Y ⊗ LXα
∀X, Y ∈ G, ∀α ∈ A.

Given aG-operation over a graded algebraA we define analgebraic connectiononA as
an elementω ∈ G ⊗ A1 such thatIXω = X ⊗ 1 � X, LXω = [ω,X] ∀X ∈ G. Given a
G-operation we denote its set of algebraic connections byC.

Thecurvatureof an algebraic connection is an element8 ∈ G⊗A2 that satisfiesdω +
(1/2)[ω,ω] = 8. In particular this condition impliesd8 + [ω, 8] = 0, IX8 = 0, LX8 =
[8,X] ∀X ∈ G.

Givenωi ≡
∑

{ai} eai ⊗ ω
ai
i ∈ G⊗A1, i ∈ N, we defineω1 · · ·ωn .=

∑
{ai} ea1 · · · ean ⊗

ω
a1
1 · · ·ωann = ∑

c ec⊗(ω1 · · ·ωn)c ∈ G⊗An with (ω1 · · ·ωn)c ≡
∑

{ai} γ
c
a1···anω

a1
1 · · ·ωann .

Now, let us consider bigraded algebras. The definitions will be immediate extensions
from the graded case.
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A bigraded commutative algebrais a pair(Υ, ∗) such thatΥ is an algebra that admits a
direct sum decomposition of the typeΥ = ⊕(m,n)∈Z×ZΥ (m,n) and the product∗ satisfies
Υ(m,n) ∗ Υ(r,s) ⊂ Υ(m+r,n+s), with commutativity meaningα ∗ β = (−1)(m+n)(r+s)β ∗ α
∀α ∈ A(m,n), ∀β ∈ A(r,s). Given a bigraded algebra,Υr ≡ ⊕m∈ZΥ (m,r−m) defines a
graded structure onΥ , i.e.Υ = ⊕r∈ZΥ r.

We also have the same concept ofsuperderivationonΥ : a(r, s)-superderivation is a linear
mapΨ : Υ(m,n) → Υ(m+r,n+s) with Ψ(αβ) = (Ψα)β + (−1)(r+s)(m+n)αΨβ ∀α ∈ Υ(m,n).
We denoteD(Υ) ≡ ⊕(m,n)∈Z×ZD(m,n)(Υ) = ⊕r∈ZDr(Υ) where the total degree of a
superderivation is given by the sum of its bidegree indices.

A bigraded commutative differential algebrais defined as(Υ, ∗, d̃) with (1) (Υ, ∗) a
bigraded commutative algebra and (2)d̃ a superderivation of total degree 1,d̃ =
⊕m∈Zd̃(m,1−m).

A bigradedG-operationis defined as(Υ, ∗, d̃, Ĩ, L̃) with (1) (Υ, ∗, d̃) a bigraded com-
mutative differential algebra and (2)Ĩ : G → D−1(Υ) with ĨX ≡ ∑

m∈Z Ĩ
(m,−1−m)
X , and

L̃ : G→ D0(Υ) with [d̃, ĨX] = L̃X ≡
∑
m∈Z L̃

(m,−m)
X .

An algebraic connectionon a bigradedG-operationΥ is an elementω̃ ∈ G ⊗ Υ 1,
ω̃
.=∑D

k=0 ω̃
1−k
k satisfyingĨXω̃ = X⊗ 1, L̃Xω̃ = [ω̃, X].

Thecurvatureof the algebraic connectioñω is an element̃8 ∈ G ⊗ Υ 2, 8̃
.=∑D

i=0 8̃
2−i
i

such that̃dω̃ + (1/2)[ω̃, ω̃] = 8̃.
This previous definition of bigradedG-operation is too general. In the next definition we

will restrict it in order to fit our purposes.

Definition 1 (BRST G-operation). A BRSTG-operation is the structure determined by
(Υ, ∗, d̃, Ĩ, L̃, ω̃, ρ̃) where (1)(Υ, ∗, d̃, Ĩ, L̃) is aG-operation with

(i) Υ(m,n) = {0} if m < 0 orm > D with D ∈ N;

(ii) d̃ ≡
∑
m∈Z+

d̃(m,1−m) .=b+ d +
D∑
i=2

∆1−i
i , d̃2 = 0; (142)

(iii) ĨX ≡
∑
m∈Z

Ĩ
(m,−1−m)
X

.=Ĩ(−1,0)
X ; (143)

(iv) L̃X ≡
∑
m∈Z

L̃
(m,−m)
X

.=L̃(0,0)X with L̃ = [d̃, Ĩ] (144)

and (2)ω̃ is an algebraic connection onΥ with curvatureρ̃.

Theorem 1. For a BRSTG-operation we have

ĨXd + dĨX = L̃X, (145)

ĨXb+ bĨX = 0, (146)

ĨX∆
1−i
i +∆1−i

i ĨX = 0 ∀ i ≥ 2, (147)

ĨXω̃
1−i
i = 0, i �= 1, (148)

ĨXω̃
0
1 = X⊗ 1, (149)
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L̃Xω̃
1−i
i = [ω̃1−i

i , X], 0 ≤ i ≤ D, (150)

ĨX8̃
2−i
i = 0, 0 ≤ i ≤ D, (151)

L̃X8̃
2−i
i = [8̃2−i

i , X], 0 ≤ i ≤ D. (152)

Proof. This follows immediately fromDefinition 1. �

We extend̃IX, L̃X toG⊗Υ in the same way as we did for the graded case. Note that our
definition of BRSTG-operation is an extension of that one adopted in[8] in which we allow
the differentiald̃ to have components∆1−k

k other thand̃(0,1) = b andd̃(1,0) = d. We also
allow the algebraic connection and curvature to contain other component fields in addition
to ω̃1

0, ω̃0
1, 8̃2

0, 8̃1
1, 8̃0

2.
Finally, we consider aut0(A) = {ξ ∈ G⊗A0|LXξ = [ξ,X] ∀X ∈ G} that will correspond

later on to the concept of the infinitesimal gauge transformations, and aut∗0(A) its dual. In
terms of the generators ofG we writeξ = ∑

a ea ⊗ ξa with ξa ∈ A0. Here, the spaceA0 is
a subalgebra ofA, therefore it has a structure of aK-vector space. The spaceA∗0 is then
understood as the space of K-linear mappings onA0. Givenξ ∈ aut0(A) we define

Iξ : A→ A, α→ Iξα
.=

∑
a

ξaIaα,

Lξ : A→ A, α→ Lξα
.=

∑
a

((dξa)Iaα+ ξaLaα)

and we extend them toG⊗A asIξ(X⊗α) = X⊗Iξα,Lξ(X⊗α) = X⊗Lξα. In particular,
they act on the space of algebraic connectionsC ⊂ G⊗A1 giving

Lξ(ω) = dξ + [ω, ξ], (153)

Iξ(ω) = ξ. (154)

It is immediate to check that

IXLξω = 0, (155)

LXLξω = [Lξω,X], (156)

thereforeLξω is not an algebraic connection. We obtain an algebraic connection through
the combinationω+Lξω. HereLξω is interpreted as the infinitesimal gauge transformation
of ω. Given an algebraic connectionω we also define

Dω : G⊗A→ G⊗A, Dω = d + [ω, . . . ] (157)

and we haveLξω = Dωξ. It is straightforward to derive the following properties:

DωLξω = [ρ, ξ], (158)

IXDωLξω = 0, LXDωLξω = [DωLξω,X]. (159)
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5.2. An example of bigraded algebra:(K, ∗)

Let us denoteK(0,0) ≡ {1 : C→ A0, 1(ω) = 1 ∈ A0 ∀ω ∈ C}:

K(m,n) =
{
F(C× (aut0(A))n,Am) � F(C,∧n

(aut0∗(A))⊗Am) if n ≥ 0,

F(C× (aut0∗(A))n,Am) � F(C,∧n
(aut0(A))⊗Am) if n < 0

(160)

andK
.=⊕(m,n)∈Z+×Z K(m,n). Here,F(C× (aut0(A))n,Am) denotes the space ofn-linear

antisymmetric maps in aut0(A)with values inAm, and analogouslyF(C×(aut0∗(A))n,Am)
denotes the space ofn-linear antisymmetric maps in aut0∗(A) with values inAm.

We write τnm ≡ ∑
{τ̂,ω} τ̂n ⊗ wm with τ̂n : C → ∧n

(aut0∗(A)) if n > 0 or τ̂n : C →∧n
(aut0(A)) if n < 0 andwm : C → Am. The last sum is done over decomposable

elements{τ̂n, wm}. Let us introduce a product among elements ofF(C,
∧
(aut0∗(A))) ∪

F(C,
∧
(aut0(A))),

Definition 2. Let n, n′ ∈ N. Given τ̂n, τ̂n
′
, τ̂−n, τ̂−n′ ∈ F(C,∧(aut0∗(A))) ∪ F(C,∧

(aut0(A))) we define

τ̂n�τ̂n
′
(ω; ξ1, . . . , ξn+n′)

.= 1

(n+ n′)!
∑

σ∈Pn+n′
εστ̂

n(ω; ξσ1, . . . , ξσn)τ̂
n′(ω; ξσn+1, . . . , ξσn+n′ ), (161)

τ̂−n�τ̂−n
′
(ω; ξ∗1, . . . , ξ∗n+n′)

.= 1

(n+ n′)!
∑

σ∈Pn+n′
εστ̂

−n(ω; ξ∗σ1
, . . . , ξ∗σn)τ̂

−n′(ω; ξ∗σn+1
, . . . , ξ∗σn+n′ ), (162)

τ̂−n′�τ̂n(ω; ξ∗1, . . . , ξ∗n′−n)
.=τ̂−n′(ω; ξ∗1, . . . , ξ∗n′−n, τ̂n(ω))

τ̂n�τ̂−n′ .=(−1)nn′ τ̂−n′�τ̂n

}
for n′ > n, (163)

τ̂n�τ̂−n′(ω; ξ1, . . . , ξn−n′) .=τ̂n(ω; ξ1, . . . , ξn−n′ , τ̂−n′(ω))
τ̂−n′�τ̂n .=(−1)nn′ τ̂n�τ̂−n′

}
for n > n′. (164)

Notice that fixing(n′−n) elementsξ∗1, . . . , ξ
∗
n′−n on the right-hand side of(163)we have

τ̂−n′ as an-linear antisymmetric map on(aut∗0(A)). For simplicity let us consider̂τn(ω) as
a decomposable elementθ∗1∧· · ·∧θ∗n. Using the isomorphismFlinear(

∧n
(aut∗0(A)),K) �

F(aut∗0(A)×· · ·×aut∗0(A),K) (the rhs denoting the space ofn-linear antisymmetric maps
in aut0∗(A)) we interpret̂τ−n′(ω; ξ∗1, . . . , ξ∗n′−n, τ̂n(ω)) = τ̂−n′(ω; ξ∗1, . . . , ξ∗n′−n, θ∗1, . . . ,
θ∗n) that is the exact meaning to the rhs of(163).

Definition 3. We define a product inK as

∗ : K(m,n) ×K(m′,n′) → K(m+m′,n+n′)
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(τnm, τ
n′
m′)→ τnm ∗ τn

′
m′
.=τ̂n�τ̂n

′ ⊗ (−1)mn′wm ∧ wm′ . (165)

Theorem 2. (K, ∗) is a bigraded commutative algebra.

Proof. The product∗ satisfiesK(m,n) ∗ K(m′,n′) ⊂ K(m+m
′,n+n′) which makesK

.=
⊕(m,n)∈Z+×Z K(m,n) a graded algebra. The product� satisfiesτ̂n�τ̂n

′ = (−1)nn′ τ̂n
′
�τ̂n,

and we haveτnm ∗ τn
′
m′ = (−1)(n+m)(n′+m′)τn′

m′ ∗ τnm, i.e.∗ is commutative. �

5.2.1. Extending(K, ∗) to a bigradedG-operation
Let (A, ·, d, I, L) be aZ+-gradedG-operation. Define onK the mapsd, ĨX, L̃X ∀X ∈ G

as

d : K(m,n) → K(m+1,n)

(dαnm)(ω; ζ1, . . . , ζn) .=d(αnm(ω; ζ1, . . . , ζn)), (166)

ĨX : K(m,n) → K(m−1,n)

(ĨXα
n
m)(ω; ζ1, . . . , ζn) .=IX(αnm(ω; ζ1, . . . , ζn)), (167)

L̃X : K(m,n) → K(m,n)

(L̃Xα
n
m)(ω; ζ1, . . . , ζn)) .=LX(αnm(ω; ζ1, . . . , ζn)) (168)

∀αnm ∈ K(m,n) and withζi, i = 1, . . . , n denoting elements of either aut0(A) or aut0∗(A).
Ĩ andL̃ satisfy

Ĩ[X,Y ] = L̃XĨY − ĨY L̃X, (169)

L̃[X,Y ] = L̃XL̃Y − L̃Y L̃X ∀X, Y ∈ G (170)

and this makes(K, ∗, d, Ĩ, L̃) a bigradedG-operation.

5.3. A particular example of a BRSTG-operation:H

Let us define the following elements ofG⊗K:

• ϕ̃1
0
.=c̃ ≡ ∑

a ea ⊗ c̃a ∈ G⊗ F(C× aut0(A),A0):

c̃a(ω; ξ) .=ξa +
N∑
i=1

θ∗i(ξ)(Iθiω)
a = ξa +

N∑
i=1

θ∗i(ξ)θai ; (171)

• ϕ̃0
1
.=Ã ≡ ∑

a ea ⊗ Ãa ∈ G⊗ F(C,A1):

Ãa(ω)
.=ωa +

N∑
i=1

Ai(Lθiω)
a, Ai ∈ K; (172)
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• ϕ̃1−k
k ≡ ∑

a ea ⊗ ϕ̃a,1−kk ∈ G⊗ F(C× (aut0∗(A))k−1;Ak) k ≥ 2:

ϕ̃
a,1−k
k (ω, ξ∗1, . . . , ξ

∗
k−1)

=
∑

{i1,... ,ik−1}⊂{1,... ,N}
θi1 ∧ · · · ∧ θik−1(ξ

∗
1 . . . ξ

∗
k−1)⊗ (Dω(Lθi1ω · · ·Lθik−1

ω))a;

(173)

• η̃2
0
.=φ̃ ≡ ∑

a ea ⊗ φ̃a ∈ G⊗ F(C× (aut0(A))2,A0):

φ̃a(ω, ξ1, ξ2) =
∑

{i1,i2}⊂{1,... ,N}
θ∗i1 ∧ θ∗i2(ξ1, ξ2)⊗ [θi1, θi2]a; (174)

• η̃1
1
.=ψ̃ ≡ ∑

a ea ⊗ ψ̃a ∈ G⊗ F(C× (aut0(A))1,A1):

ψ̃a(ω; ξ) =
N∑
i=1

θ∗i(ξ)⊗ (Lθiω)a; (175)

• η̃0
2
.=B̃ ≡ ∑

a ea ⊗ B̃a ∈ G⊗ F(C,A2):

B̃a(ω) = F̃ a(ω)+
N∑

i,j=1

Bij (LθiωLθjω)
a with F̃ = d + 1

2
[Ã, Ã], Bij ∈ K;

(176)

• η̃2−k
k ≡ ∑

a ea ⊗ η̃a,2−kk ∈ G⊗ F(C× (aut0∗(A))k−2,Ak), k ≥ 3:

η̃
a,2−k
k (ω; ξ∗1, . . . , ξ∗k−2)

=
∑

{i1,... ,ik−2}⊂{1,... ,N}
θi1 ∧ · · · ∧ θik−2(ξ

∗
1, . . . , ξ

∗
k−2)⊗ (Lθi1ω · · ·Lθik−2

ωρ)a

(177)

∀ ξk ∈ aut0(A), ∀ ξ∗k ∈ aut0∗(A) and forθi ∈ aut0(A) andθ∗i ∈ aut0∗(A), i = 1, . . . , N.
The integerN may denote any number of elements of aut0(A) and its dual. In this sense, to
any choice ofN pairs(θi, θ∗i) we have a specific form for̃ϕ1−i

i , η̃2−i
i given by(171)–(177).

In addition, given a certain field̃ϕ1−i
i or η̃2−i

i we have associated a finite sequence of fields

c̃→ Ã→ · · · ϕ̃1−k
k → · · · ϕ̃1−N

N

↓↑
φ̃→ ψ̃→ · · · η̃2−k

k → · · · η̃2−N
N ,

(178)

each of them defined by(171)–(177)in terms of the sameN pairs(θi, θ∗i) that appear in
ϕ̃1−i
i or η̃2−i

i .
From(153)–(156)we notice that they also satisfy

ĨXϕ̃
1−i
i = 0, i �= 1, (179)
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ĨXϕ̃
0
1 = X⊗ 1, (180)

L̃Xϕ̃
1−i
i = [ϕ̃1−i

i , X], 0 ≤ i ≤ D, (181)

ĨXη̃
2−i
i = 0, 0 ≤ i ≤ D, (182)

L̃Xη̃
2−i
i = [η̃2−i

i , X], 0 ≤ i ≤ D. (183)

Once again, let(A, ., d, I, L) be aG-operation andC ⊂ G ⊗ A1 be the space of algebraic
connections onA. We introduce a particular BRSTG-operation as follows.

Definition 4. (H, ∗, d̃, Ĩ, L̃, ω̃, ρ̃) is a BRSTG-operation with (1)(H, ∗, d̃, Ĩ, L̃) a G-
operation such that

(i) H is the subalgebra ofK generated by{ϕ̃1−i
i , dϕ̃1−i

i , η̃2−i
i , dη̃2−i

i }i=1,... ,N . The graded
structure ofH is obtained from the graded structure ofK and we writeH =
⊕(m,n)∈Z+×ZH(m,n) withH(m,n) = K(m,n) ∩H.

(ii) The product inH is defined by the same product inK as given in(165).
(iii) The differential inH is a mapd̃ : H(m,n) → Hm+n+1 .= ⊕r∈Z+ H(r,m+n+1−r), d̃ ≡∑D

i=0∆
1−i
i

.=b + d + ∑D
i=2∆

1−i
i with d̃2 = 0 andd a superderivation of degree

(1,0) defined as(166). The BRST operator is a superderivation of bidegree (0,1),
b : H(m,n) → H(m,n+1) defined by(44)–(47), and∆1−i

i : H(m,n) → H(m+i,n−i+1) is
a superderivation of degree (i,1-i) defined as in(31)with δ given as in(48)–(55).4

(iv) The interior product̃I is given by(167) and the Lie derivativẽL is given by(168).
(2) The algebraic connection and curvature are defined asω̃ = ∑N

i=0 ϕ̃
1−i
i and 8̃ =∑N

i=0 η̃
2−i
i . From(179)–(183)we obtain that̃IXω̃ = X⊗ 1, L̃Xω̃ = [ω̃, X], ĨX8̃ = 0,

L̃X8̃ = [8̃, X].

The zero curvature limit is a particular case of the previous construction whenH is gener-
ated by{ϕ̃1−i

i , dϕ̃1−i
i }i=1,... ,N and the algebraic connection satisfiesd̃ω̃+ (1/2)[ω̃, ω̃] = 0.

6. The gauge group and the gauge algebra

In this section we review the concepts of gauge group and gauge algebra. Our main
purpose is to set up our notations and give an intuitive development of these concepts.

Letπ : P →Mbe a principal fiber bundle with structure groupG. Let us denoteG the Lie
algebra ofG andR̃ = P ×G→ P , R̃g : P → P the right action ofG onP . ForX ∈ G we

have associated ãX ∈ F(1,0)fund (P), withF(1,0)fund (P) the space of fundamental vector fields onP .

Givenf ∈ F(P,R), X̃ ∈ F(1,0)fund (P)we define(f · X̃)(p) = f(p)X̃(p). This turnsF(1,0)fund (P)

into aF(P,R)-module that we denote asℵfund(P). We have the isomorphismsF(P,G) �
F(P,R) ⊗ G � ℵfund(P) where the second isomorphism is defined asF(P,R) ⊗ G !
f ⊗X↔ f · X̃ ∈ ℵfund(P).

4 Hered replacesd in the expressions forb,∆, δ given in(44)–(55).
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Thegauge groupofP is denoted byG and can be identified in three equivalent ways:G =
Autv(P) � Feq(P,G) � Γ(AdP) [23,26]. Here,f ∈ Autv(P) ⊂ Diff (P) is such thatπ◦f =
π, R̃g ◦ f = f ◦ R̃g ∀ g ∈ G. The group structure of Autv(P) is defined by the composition
of maps. Next,̃f ∈ Feq(P,G) is a mapf̃ : P → G such thatf̃ (pg) = Ad(g−1)f̃ (p). The
group structure ofFeq(P,G) is given by pointwise multiplication,(f̃ ·f̃ ′)(p) = f̃ (p)f̃ ′(p).
Finally, Γ(AdP) denotes the space ofC∞ sections on the adjoint bundleAdP≡ P ×AdG

with Ad the adjoint map onG [23,26]. In this work we will consider just the first two
identifications.

The 1−1 map between Autv(P) andFeq(P,G) is defined as follows. Givenf ∈ Autv(P)
we can definẽf ∈ Feq(P,G) [8,23,26]such thatf(p) = pf̃ (p) ∀p ∈ P . Conversely, given
f̃ ∈ Feq(P,G) we definef ∈ Autv(P), f = R̃ ◦ (id, f̃ ) with id the identity map onP .
Those two maps allow us to identify Autv(P) � Feq(P,G).

The concept of tangent space on a space of maps[27] can be used to define the tangent
space of Autv(P) atf . This will give a definition for the gauge algebra in the same way as
one defines the Lie algebra of a Lie group as the tangent space to the identity. We define
Xf ∈ Tf (Autv(P)) as a mapXf : P → Tf (P) such thatXf (p) ∈ Tf(p)(P) with

Xf ≡ d

dt
φt

∣∣∣∣
t=0

(184)

and

• φt ∈ Autv(P) (i.e.π ◦ φt = π, R̃g ◦ φt = φt ◦ R̃g, φ0 ≡ f );
• φp : R→ P is a differentiable curve inP such thatφp(t) = φt(p).

Then we have

π∗Xf (p) = d

dt
π ◦ φt(p)

∣∣∣∣
t=0

= d

dt
π(p)

∣∣∣∣
t=0

= 0,

i.e.Xf (p) ∈ Vf(p) ≡ Tf(p)(π
−1(x)), (π(p) = π(f(p)) = x). Also

R̃g∗Xf (p) = d

dt
R̃g ◦ φt(p)

∣∣∣∣
t=0

= d

dt
φt(p · g)

∣∣∣∣
t=0

= Xf (p · g),

i.e. R̃g∗Xf = Xf .
Now, sincef is a 1–1 map we note thatp �= p′ ⇒ Xf (p) ∈ Tf(p) �= Tf(p′) ! Xf (p′),

therefore it is possible to choose a vector fieldX̃ ∈ F(1,0)(P) such that∀p ∈ P , Xf (p) ≡
ε̃f(p)X̃(f(p)) (ε̃f(p) ∈ R), or Xf ≡ (ε̃ · X̃) ◦ f with ε̃ ∈ F(P,R), i.e.Xf ∈ ℵ(P). The

first condition restricts̃X ∈ F(1,0)fund (P) and consequentlyXf = (ε̃ · X̃) ◦ f ∈ ℵfund(P). The
second condition gives̃ε(f(p))R̃g∗X̃f(p) = ε̃(f(pg))X̃f(pg). Let {ẽ, i = 1, . . . ,dimG} be

a basis forF(1,0)fund (P). ThenX̃ = λiẽi andXf ≡ (ε̃ · X̃) ◦ f = (ε̃i · ẽi) ◦ f with ε̃i = λiε̃.
We have then characterized.

• Tf (Autv(P)) = {(ε̃i · ẽi) ◦ f |ε̃i ∈ F(P,R), ẽi ∈ F(1,0)fund (P)} with

ε̃i(f(p))R̃g∗ẽi(f(p)) = ε̃i(f(pg))ẽi(f(pg)). (185)
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Let us now consider the tangent space on the identity mapI ∈ Autv(P). From the previous
development we obtain thatXI ∈ TI(Autv(P)) has the formXI = ε̃iẽi and should satisfy
ε̃i(p)R̃g∗ẽi(p) = ε̃i(pg)ẽi(pg). We then have

ε̃i(p)R̃g∗ẽi(p) = ε̃i(p)R̃g∗R̃p∗ei(e) = ε̃i(p)R̃p∗Rg∗ei(e) = R̃p∗(ε̃i(p)Rg∗ei(e)),
(186)

ε̃i(pg)ẽi(pg) = ε̃i(pg)R̃pg∗ei(e) = ε̃i(pg)R̃p∗Lg∗ei(e) = R̃p∗(ε̃i(pg)Lg∗ei(e)).
(187)

Since the action ofG on P is free we obtain,̃εi(p)Rg∗ei(e) = ε̃i(pg)Lg∗ei(e) and then
ad(g−1)(ε̃i(p)ei(e)) = ε̃i(pg)ei(e). We then defineFeq(P,G) as the set of elements of this
type, i.e.Feq(P,G) = {ε̃ = ε̃i ⊗ ei|ε̃(pg) = ad(g−1)ε̃(p), ε̃i ∈ F(P,R), ei ∈ G}. This
result defines an isomorphismTI(Autv(P)) � Feq(P,G) that provides another description
for the gauge algebraG.

Here, for the case ofTI(Autv(P)) let us find an explicit form for the diffeomorphisms
φt (184). ConsiderXI = ε̃iẽi ≡ (d/dt)φt|t=0. Let us take local charts(Uα,ψα) of G and
(Vβ, χβ) of P in terms of which we can writẽRrp(x) ≡ χr ◦R̃p ◦ψ−1(x). We denoteψ(g) =
x ≡ (x1, . . . , xn), ψi(g) = xi andχ(p) = y ≡ (y1, . . . , ym), χr(p) = yr. We can write
ẽi(p) ≡ R̃p∗ei(e) = (∂R̃rp(x)/∂x

i)|ψ(e)(∂/∂yr)|χ(p) andε̃i(p) = (d/dt)ψi ◦ exp(tε̃(p))|t=0
then

XI(p)= ε̃i(p)ẽi(p) = d

dt
ψi ◦ exp(tε̃(p))

∣∣∣∣
t=0

∂R̃rp(x)

∂xi

∣∣∣∣∣
ψ(e)

∂

∂yr

∣∣∣∣
χ(p)

= d

dt
R̃rp(exp(tε̃(p)))

∣∣∣∣
t=0

∂

∂yr

∣∣∣∣
χ(p)

= d

dt
R̃p(exp(tε̃(p)))

∣∣∣∣
t=0

(188)

that suggest us to defineφt = R̃exp(tε̃) with φt(p)
.=R̃(p, (exp(tε̃(p)))) = R̃p(exp(tε̃(p))).

(188) agrees with the same expression given in Schmid[26] for the elementsZε̃ of the
gauge algebra.

7. An explicit realization forH

LetP(M,G) be a principal fiber bundle with structure groupG. We defineA
.=Ω(P) =

⊕r∈Z+Ωr(P) ≡ ⊕r∈Z+Ar. Considering the interior product and Lie derivative onΩ(P)we
define∀X (with G ! X↔ X̃ ∈ F(1,0)fund (P)):

IX
.=IX̃, LX

.=LX̃
that satisfies conditionsI[X,Y ] = LXIY − IYLX, L[X,Y ] = LXLY − LYLX ∀X, Y ∈ G.
Therefore, taking the multiplication onΩ(P) as the exterior product and the differential
as the exterior derivative it is straightforward to see that(Ω(P),∧, d, I, L) becomes a
G-operation.
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A connection onP is an elementω ∈ G ⊗ Ω1(P) that satisfies̃R∗gω = ad(g−1) · ω,

ω(X̃) = X with ad(g) = Lg∗Rg−1∗. These conditions imply

LXω = [ω,X], IXω = X⊗ 1.

With the choiceAr
.=Ωr(P) we have that aut0(A) is the gauge algebra, i.e. aut0(A) ≡

Feq(P,G). Indeed, letξ ∈ Feq(P,G). SinceF(P,G) � G ⊗ Ω0(P) we can writeξ =∑
a ea ⊗ ξa. Then∀X ∈ G, LXξ = [ξ,X] (see[5]). We have analogue expressions for

Lξ : Ω(P)→ Ω(P) (153)andDω : G⊗Ω(P)→ G⊗Ω(P) (157).
The components of the algebraic connection and the curvature will depend on the as-

signment of at leastN = D linearly independent elements of aut0(P) and its dual aut∗0(P).
Their definition follow the same procedure given in(171)–(177)and they are functions
(0 ≤ i ≤ q ≤ D, with q ∈ Z and D the spacetime dimension):

c̃a
.=ϕ̃a,10 ∈ H(0,1) ⊂ F(C× G,Ω0(P)), Ãa

.=ϕ̃a,01 ∈ H(1,0) ⊂ F(C,Ω1(P)),

ϕ̃
a,1−i
i ∈ H(i,1−i) ⊂ F(C× G∗i−1,Ωi(P)), φ̃a

.=η̃a,20 ∈ H(0,2)⊂F(C×G2,Ω0(P)),

ψ̃a
.=η̃a,11 ∈ H(1,1) ⊂ F(C× G1,Ω1(P)), B̃a

.=η̃a,02 ∈ H(2,0) ⊂ F(C,Ω2(P)),

η̃
a,2−i
i ∈ H(i,2−i) ⊂ F(C× G∗i−2,Ωi(P))

and they generate a bigraded differential algebraH = ⊕(m,n)∈Z+×ZH(m,n). The algebraic
connection and its curvature are elements:

ω̃ ∈ G⊗H1 .=G⊗ (H(0,1) ⊕H(1,0) ⊕ · · · ⊕H(q,1−q)),
8̃ ∈ G⊗H2 .=G⊗ (H(0,2) ⊕H(1,1) ⊕H(2,0) ⊕ · · · ⊕H(q,2−q)).

Theδ operator is a(1,−1)-bigraded derivation onH and eδ defines homomorphisms:

eδ : G⊗H(0,1) → G⊗H1, eδ : G⊗H(0,2) → G⊗H2,

c̃→ eδc̃ = ω̃, φ̃→ eδφ̃ = 8̃,

which transforms

bc̃ + 1
2[c̃, c̃] = φ̃

eδ−→d̃ω̃ + 1
2[ω̃, ω̃] = 8̃, bφ̃ + [c̃, φ̃] = 0

eδ−→d̃8̃+ [ω̃, 8̃] = 0.

8. Concluding remarks

(1) Our model extends the original TYMT defined for positive ghost number fields to more
general models containing negative ghost number fields as well. The main ideas behind
one and another formulation is to accommodate the fields either as components of a
connection with total degree 1 or as components of a curvature which has total degree 2.
Nonetheless, in the process of obtaining Witten’s action for TYMT as the gauge fixing
of the symmetries of the classical action

∫
Tr F ∧ F [2,24] we have to introduce other

fields with total degree other than 1 or 2 that cannot be components ofW orF. We can,
however, define other ladders in order to accommodate those fields in the same way as
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it was done in[6]. For example, for fields with total degrees−1 and 0 it is possible to
introduce two laddersB = ∑

i θ
−1−i
i , Ψ = ∑

i λ
−i
i and impose BRST transformations

from d̃B+ [W,B] = Ψ . Then, we can develop our model following the same procedure
of Section 2. Other choices of ladders and transformations are possible and will depend
on what type of model one intends to build.

(2) A parallel development that is close to ours, and that presents an equivalent form of
equations (26) and (27), was proposed in[13] in the study of two- and four-dimensional
topological matter. In fact, the operatorsδ andb satisfying [δ, b] = d and [b, d] = 0
suggest that they are related to the odd generatorsGµ andQ of the topological algebra.
Here, identifyingδ = δµ ⊗ dxµ ↔ G = Gµ ⊗ dxµ and−b ↔ Q we obtain that
[G,Q] = d, [Q, d] = 0. In addition to these relations, we may have models with
either [δ, d] = 0 or [δ, d] �= 0 which would correspond to [G, d] = 0 or [G, d] �= 0.
This last possibility, however, does not appear in the topological algebras of[13]. Since
[δ, d] = ∆−1

2 , it may be possible to have topological algebras with extra generators
∆1−k
k = 1/k![δ,∆2−k

k−1], k = 2, . . . , D. The existence in[13] of a set of descendents

fields given byφ(n)µ1µ2···µn(x) = 1/n![Gµ1, [Gµ2 . . . [Gµn, φ(x)] . . . ]] is equivalent to
the imposition of(26) and (27). A quite similar approach was presented in[14] in the
study of balanced topological field theory. Despite these analogies, the details behind
one and another formulation are completely different. In[28] we show how to construct
topological algebras for models defined by ladders(1) and (2)and derivativẽd = b+d.
In particular, by taking the case of two dimensions we also show how theδ operator
induces a supersymmetry algebra.

(3) It may be possible to interpret our model in terms of equivariant cohomology. First,
we introduce the Weil algebraW(G)

.=S(G∗)⊗∧
(G∗) where we assumeca as the odd

generators of degree 1, andφa as the even generators of degree 2. The differential in
W(G) is defined asdWca = −fabcc

bcc + φa, dWφa = −fabcc
bφc. In the construction of

[29,30], TYMT is understood in terms of the BRST model for equivariant cohomology,
i.e. as a differential algebra(B, dB) with B = (W(G) ⊗Ω(M))basic the subalgebra of
W(G) ⊗ Ω(M) invariant by the action ofIa ⊗ 1+ 1⊗ Ia andLa ⊗ 1+ 1⊗ La (we
denote byIa ⊗ 1 andLa ⊗ 1 the action of the interior derivative and the Lie derivative
onW(G), and 1⊗ Ia and 1⊗ La the respective action onΩ(M)). The differential is
dB = dW ⊗ 1+ 1⊗ dM + ca ⊗ La − φa ⊗ Ia. Since the generators ofB contain only
the positive ghost number fieldsca andφa there is no possibility to introduce negative
ghost number fields inB. A solution would be to replaceΩ(M) by an appropriate
G-algebraB such thatW(G)⊗Bwould accommodate the negative ghost number fields.
In this approach, the BRST operator is considered as the differential in the algebra
B = W(G)⊗B [29,31]. The problem then reduces to find an appropriate differential for
B so that it gives the correct transformations for all the fields. The increasing complexity
of the transformations of negative ghost number fields make this program difficult to
be implemented.

(4) We have seen thatbTr φN = 0−→eδ d̃ TrFN = 0 � (b + d)TrFN + ∆TrFN = 0.
TrFN is theNth Chern class withF given by(2). In the problem of cohomology ofb
(modulod) (b+d)Ω̂(2N) = 0, the solutionΩ̂(2N) does not coincide with TrFN (unless
∆ = 0). This is a major difference from the results of[1–3] where the Chern class
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TrFN (being a solution of descent equations) also belonged to the cohomology ofb

modulod. In our model, when [δ, d] �= 0, Ω̂(2N) and TrFN will not agree. A direct
consequence of this was observed in the model ofSection 3, as it is explicitly seen in
the differences between(110)–(114) and (7).
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